Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405978

RESUMO

Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. We recently reported a family with a paternally inherited intragenic ASTN2 duplication with a range of neurodevelopmental disorders, including autism spectrum disorder (ASD), learning difficulties, and speech and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional Astn2 knockout (KO and cKO, respectively) mouse lines. Astn2 KO mice exhibit strong ASD-related behavioral phenotypes, including a marked decrease in separation-induced pup ultrasonic vocalization calls, hyperactivity and repetitive behaviors, altered social behaviors, and impaired cerebellar-dependent eyeblink conditioning. Hyperactivity and repetitive behaviors were also prominent in Astn2 cKO animals. By Golgi staining, Astn2 KO PCs have region-specific changes in dendritic spine density and filopodia numbers. Proteomic analysis of Astn2 KO cerebellum reveals a marked upregulation of ASTN2 family member, ASTN1, a neuron-glial adhesion protein. Immunohistochemistry and electron microscopy demonstrates a significant increase in Bergmann glia volume in the molecular layer of Astn2 KO animals. Electrophysiological experiments indicate a reduced frequency of spontaneous excitatory postsynaptic currents (EPSCs), as well as increased amplitudes of both spontaneous EPSCs and inhibitory postsynaptic currents (IPSCs) in the Astn2 KO animals, suggesting that pre- and postsynaptic components of synaptic transmission are altered. Thus, ASTN2 regulates ASD-like behaviors and cerebellar circuit properties.

2.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808786

RESUMO

Chromatin is a crucial regulator of gene expression and tightly controls development across species. Mutations in only one copy of multiple histone genes were identified in children with developmental disorders characterized by microcephaly, but their mechanistic roles in development remain unclear. Here we focus on dominant mutations affecting histone H4 lysine 91. These H4K91 mutants form aberrant nuclear puncta at specific heterochromatin regions. Mechanistically, H4K91 mutants demonstrate enhanced binding to the histone variant H3.3, and ablation of H3.3 or the H3.3-specific chaperone DAXX diminishes the mutant localization to chromatin. Our functional studies demonstrate that H4K91 mutant expression increases chromatin accessibility, alters developmental gene expression through accelerating pro-neural differentiation, and causes reduced mouse brain size in vivo, reminiscent of the microcephaly phenotypes of patients. Together, our studies unveil a distinct molecular pathogenic mechanism from other known histone mutants, where H4K91 mutants misregulate cell fate during development through abnormal genomic localization.

3.
Genes Dev ; 37(13-14): 570-589, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37491148

RESUMO

Developing neurons undergo a progression of morphological and gene expression changes as they transition from neuronal progenitors to mature neurons. Here we used RNA-seq and H3K4me3 and H3K27me3 ChIP-seq to analyze how chromatin modifications control gene expression in a specific type of CNS neuron: the mouse cerebellar granule cell (GC). We found that in proliferating GC progenitors (GCPs), H3K4me3/H3K27me3 bivalency is common at neuronal genes and undergoes dynamic changes that correlate with gene expression during migration and circuit formation. Expressing a fluorescent sensor for bivalent domains revealed subnuclear bivalent foci in proliferating GCPs. Inhibiting H3K27 methyltransferases EZH1 and EZH2 in vitro and in organotypic cerebellar slices dramatically altered the expression of bivalent genes, induced the down-regulation of migration-related genes and up-regulation of synaptic genes, inhibited glial-guided migration, and accelerated terminal differentiation. Thus, histone bivalency is required to regulate the timing of the progression from progenitor cells to mature neurons.


Assuntos
Epigênese Genética , Histonas , Animais , Camundongos , Histonas/metabolismo , Ativação Transcricional , Diferenciação Celular/genética
4.
Heliyon ; 9(3): e13844, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36923835

RESUMO

The 3' untranslated regions (UTRs) modulate gene expression levels by regulating mRNA stability and translation. We previously showed that the replacement of the negative regulatory elements from the 3'UTR of glial cell line-derived neurotrophic factor (GDNF) resulted in increased endogenous GDNF expression while retaining its normal spatiotemporal expression pattern. Here, we have developed a methodology for the generation of in vivo hyper- and hypomorphic alleles via 3'UTR targeting using the CRISPR/Cas9 system. We demonstrate that CRISPR/Cas9-mediated excision of a long inhibitory sequence from Gdnf native 3'UTR in mouse zygotes increases the levels of endogenous GDNF with similar phenotypic alterations in embryonic kidney development as we described in GDNF constitutive and conditional hypermorphic mice. Furthermore, we show that CRISPR/Cas9-mediated targeting of 3'UTRs in vivo allows the modulation of the expression levels of two other morphogens, Gdf11 and Bdnf. Together, our work demonstrates the power of in vivo 3'UTR editing using the CRISPR/Cas9 system to create hyper- and hypomorphic alleles, suggesting wide applicability in studies on gene function and potentially, in gene therapy.

5.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778390

RESUMO

Developing neurons undergo a progression of morphological and gene expression changes as they transition from neuronal progenitors to mature, multipolar neurons. Here we use RNA-seq and H3K4me3 and H3K27me3 ChIP-seq to analyze how chromatin modifications control gene expression in a specific type of CNS neuron, the mouse cerebellar granule cell (GC). We find that in proliferating GC progenitors (GCPs), H3K4me3/H3K27me3 bivalency is common at neuronal genes and undergoes dynamic changes that correlate with gene expression during migration and circuit formation. Expressing a fluorescent sensor for bivalent H3K4me3 and H3K27me3 domains revealed subnuclear bivalent foci in proliferating GCPs. Inhibiting H3K27 methyltransferases EZH1 and EZH2 in vitro and in organotypic cerebellar slices dramatically altered the expression of bivalent genes and induced the downregulation of migration-related genes and upregulation of synaptic genes, inhibited glial-guided migration, and accelerated terminal differentiation. Thus, histone bivalency is required to regulate the timing of the progression from progenitor cells to mature neurons.

6.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36690469

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease that comprises a range of motor and nonmotor symptoms. Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of dopamine neurons in vitro and in vivo, and intracranial delivery of GDNF has been tested in six clinical trials for treating PD. However, clinical trials with ectopic GDNF have yielded variable results, which could in part result from abnormal expression site and levels caused by ectopic overexpression. Therefore, an important open question is whether an increase in endogenous GDNF expression could be potent in reversing PD progression. Here, we tested the therapeutic potential of endogenous GDNF using mice in which endogenous GDNF can be conditionally upregulated specifically in cells that express GDNF naturally (conditional GDNF hypermorphic mice; GdnfcHyper ). We analyzed the impact of endogenous GDNF upregulation in both neuroprotection and neurorestoration procedures, and for both motor and nonmotor symptoms in the proteasome inhibitor lactacystin (LC) model of PD. Our results showed that upregulation of endogenous GDNF in the adult striatum is not protective in LC-induced PD model in mice. Since age is the largest risk factor for PD, we also analyzed the effect of deletion of endogenous GDNF in aged Gdnf conditional knock-out mice. We found that GDNF deletion does not increase susceptibility to LC-induced damage. We conclude that endogenous GDNF does not impact the outcome in the LC-induced proteasome inhibition mouse model of Parkinson's disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Dopamina/metabolismo , Neuroproteção , Complexo de Endopeptidases do Proteassoma/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Modelos Animais de Doenças
7.
Mol Psychiatry ; 27(8): 3247-3261, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618883

RESUMO

Presynaptic increase in striatal dopamine is the primary dopaminergic abnormality in schizophrenia, but the underlying mechanisms are not understood. Here, we hypothesized that increased expression of endogenous GDNF could induce dopaminergic abnormalities that resemble those seen in schizophrenia. To test the impact of GDNF elevation, without inducing adverse effects caused by ectopic overexpression, we developed a novel in vivo approach to conditionally increase endogenous GDNF expression. We found that a 2-3-fold increase in endogenous GDNF in the brain was sufficient to induce molecular, cellular, and functional changes in dopamine signalling in the striatum and prefrontal cortex, including increased striatal presynaptic dopamine levels and reduction of dopamine in prefrontal cortex. Mechanistically, we identified adenosine A2a receptor (A2AR), a G-protein coupled receptor that modulates dopaminergic signalling, as a possible mediator of GDNF-driven dopaminergic abnormalities. We further showed that pharmacological inhibition of A2AR with istradefylline partially normalised striatal GDNF and striatal and cortical dopamine levels in mice. Lastly, we found that GDNF levels are increased in the cerebrospinal fluid of first episode psychosis patients, and in post-mortem striatum of schizophrenia patients. Our results reveal a possible contributor for increased striatal dopamine signalling in a subgroup of schizophrenia patients and suggest that GDNF-A2AR crosstalk may regulate dopamine function in a therapeutically targetable manner.


Assuntos
Dopamina , Esquizofrenia , Animais , Camundongos , Dopamina/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Esquizofrenia/metabolismo , Corpo Estriado/metabolismo , Transdução de Sinais
8.
Front Aging Neurosci ; 13: 714186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475820

RESUMO

Gradual decline in cholinergic transmission and cognitive function occurs during normal aging, whereas pathological loss of cholinergic function is a hallmark of different types of dementia, including Alzheimer's disease (AD), Lewy body dementia (LBD), and Parkinson's disease dementia (PDD). Glial cell line-derived neurotrophic factor (GDNF) is known to modulate and enhance the dopamine system. However, how endogenous GDNF influences brain cholinergic transmission has remained elusive. In this study, we explored the effect of a twofold increase in endogenous GDNF (Gdnf hypermorphic mice, Gdnf wt/hyper) on cholinergic markers and cognitive function upon aging. We found that Gdnf wt/hyper mice resisted an overall age-associated decline in the cholinergic index observed in the brain of Gdnf wt/wt animals. Biochemical analysis revealed that the level of nerve growth factor (NGF), which is important for survival and function of central cholinergic neurons, was significantly increased in several brain areas of old Gdnf wt/hyper mice. Analysis of expression of genes involved in cholinergic transmission in the cortex and striatum confirmed modulation of cholinergic pathways by GDNF upon aging. In line with these findings, Gdnf wt/hyper mice did not undergo an age-related decline in cognitive function in the Y-maze test, as observed in the wild type littermates. Our results identify endogenous GDNF as a potential modulator of cholinergic transmission and call for future studies on endogenous GDNF function in neurodegenerative disorders characterized by cognitive impairments, including AD, LBD, and PDD.

9.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032268

RESUMO

Nephron endowment, defined during the fetal period, dictates renal and related cardiovascular health throughout life. We show here that, despite its negative effects on kidney growth, genetic increase of GDNF prolongs the nephrogenic program beyond its normal cessation. Multi-stage mechanistic analysis revealed that excess GDNF maintains nephron progenitors and nephrogenesis through increased expression of its secreted targets and augmented WNT signaling, leading to a two-part effect on nephron progenitor maintenance. Abnormally high GDNF in embryonic kidneys upregulates its known targets but also Wnt9b and Axin2, with concomitant deceleration of nephron progenitor proliferation. Decline of GDNF levels in postnatal kidneys normalizes the ureteric bud and creates a permissive environment for continuation of the nephrogenic program, as demonstrated by morphologically and molecularly normal postnatal nephron progenitor self-renewal and differentiation. These results establish that excess GDNF has a bi-phasic effect on nephron progenitors in mice, which can faithfully respond to GDNF dosage manipulation during the fetal and postnatal period. Our results suggest that sensing the signaling activity level is an important mechanism through which GDNF and other molecules contribute to nephron progenitor lifespan specification.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Néfrons/embriologia , Néfrons/crescimento & desenvolvimento , Organogênese/genética , Via de Sinalização Wnt/genética , Animais , Proteína Axina/metabolismo , Diferenciação Celular/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco/citologia , Proteínas Wnt/metabolismo
10.
Sci Rep ; 8(1): 11861, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089897

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of dopaminergic neurons in vitro and in vivo. For this reason, GDNF is currently in clinical trials for the treatment of Parkinson's disease (PD). However, how endogenous GDNF influences dopamine system function and animal behavior is not fully understood. We recently generated GDNF hypermorphic mice that express increased levels of endogenous GDNF from the native locus, resulting in augmented function of the nigrostriatal dopamine system. Specifically, Gdnf wt/hyper mice have a mild increase in striatal and midbrain dopamine levels, increased dopamine transporter activity, and 15% increased numbers of midbrain dopamine neurons and striatal dopaminergic varicosities. Since changes in the dopamine system are implicated in several neuropsychiatric diseases, including schizophrenia, attention deficit hyperactivity disorder (ADHD) and depression, and ectopic GDNF delivery associates with side-effects in PD models and clinical trials, we further investigated Gdnf wt/hyper mice using 20 behavioral tests. Despite increased dopamine levels, dopamine release and dopamine transporter activity, there were no differences in psychiatric disease related phenotypes. However, compared to controls, male Gdnf wt/hyper mice performed better in tests measuring motor function. Therefore, a modest elevation of endogenous GDNF levels improves motor function but does not induce adverse behavioral outcomes.


Assuntos
Comportamento Animal/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Atividade Motora/fisiologia , Animais , Corpo Estriado/metabolismo , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Feminino , Masculino , Mesencéfalo/metabolismo , Camundongos , Doença de Parkinson/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...